题目内容
【题目】在平面直角坐标系中,点是直线上的动点,定点 点为的中点,动点满足.
(1)求点的轨迹的方程
(2)过点的直线交轨迹于两点,为上任意一点,直线交于两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。
【答案】(1)(2)以 为直径的圆过 轴上的定点
【解析】分析:(1)根据条件可得点的轨迹是以为焦点、以直线为准线的抛物线,其方程为.(2)假设以为直径的圆过轴上的定点, 设 .由题意可得,,由得.设直线的方程为,与抛物线方程联立消元后得到二次方程,结合根与系数的关系和上式可得,解得,进而可得以 为直径的圆过 轴上的定点.
详解:(1)由已知得垂直平分,故
又轴,
则,
所以点到点的距离和到直线的距离相等,
故点的轨迹是以为焦点、以直线为准线的抛物线,
由条件可得轨迹的方程为.
(2)假设以为直径的圆过轴上的定点 .
设 ,
则 ,
直线 的方程为 ,
令得 即.
同理可得.
由已知得 恒成立,即,
即.
设直线的方程为 ,
由消去整理得,
所以,
于是,
整理得,
解得 .
故以 为直径的圆过 轴上的定点.
【题目】“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考) (参考公式:K2= ,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.