题目内容
数列{an},{bn}均为等差数列,a1+b1=7,a3+b3=21,则a6+b6=______.
∵数列{an},{bn}均为等差数列,
∴数列{an+bn}也为等差数列,设其公差为d,
故可得a3+b3=(a1+b1)+2d,即21=7+2d,
解之可得d=7,故a6+b6=a1+b1+5d=7+5×7=42
故答案为:42
∴数列{an+bn}也为等差数列,设其公差为d,
故可得a3+b3=(a1+b1)+2d,即21=7+2d,
解之可得d=7,故a6+b6=a1+b1+5d=7+5×7=42
故答案为:42
练习册系列答案
相关题目