题目内容
【题目】已知函数f(x)= x3﹣ (m+3)x2+(m+6)x,x∈R.(其中m为常数)
(1)当m=4时,求函数的极值点和极值;
(2)若函数y=f(x)在区间(0,+∞)上有两个极值点,求实数m的取值范围.
【答案】
(1)解:函数的定义域为R
当m=4时,f(x)= x3﹣ x2+10x,
∴f′(x)=x2﹣7x+10,令f′(x)>0,解得x>5或x<2.令令f′(x)<0,解得2<x<5列表
x | (﹣∞,2) | 2 | (2,5) | 5 | (5,+∞) |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↗ | ↘ | ↗ |
所以函数的极大值点是x=2,极大值是 ;函数的极小值点是x=5,极小值是
(2)解:f′(x)=x2﹣(m+3)x+m+6,要使函数y=f(x)在(0,+∞)有两个极值点,则 ,
解得m>3.
故实数m的取值范围为(3,+∞)
【解析】(1)根据到导数和函数的极值的关系即可求出.(2)y=f(x)在区间(0,+∞)上有两个极值点,等价于f′(x)=0在(0,+∞)有两个正根,问题得以解决.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.
练习册系列答案
相关题目