题目内容
【题目】如图所示,在直角梯形中,,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,下列说法中错误的个数是( )
①平面;
②四点不可能共面;
③若,则平面平面;
④平面与平面可能垂直.
A. 0B. 1C. 2D. 3
【答案】B
【解析】
对四个说法逐一分析,由此得出错误命题的个数.
①连接,取的中点,的中点,连接,易证明四边形是平行四边形,即,所以平面,所以①正确;
②若四点共面,因为,所以平面,可推出,所以,这与已知相矛盾,故四点不可能共面,所以②正确;
③连接,在梯形中,易得,又,所以平面,即,所以平面,则平面平面,所以③正确;
④延长至,使得,连接,易得平面平面,过作于,则平面,若平面平面,则过作直线与平面垂直,其垂足在上,前后矛盾,故④错误.综上所述,一共有个说法错误.故选B.
练习册系列答案
相关题目
【题目】为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯电量 | 第二阶梯电量 | 第三阶梯电量 |
月用电量范围(单位:) |
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,表示用电量为第二阶梯的户数,求的概率分布列和数学期望.