题目内容

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

【答案】(1C1:(x+42+y﹣32=1C2,(2)点Q

【解析】试题分析:(1)分别消去两曲线参数方程中的参数得到两曲线的直角坐标方程,即可得到曲线表示一个圆;曲线表示一个椭圆;(2)把的值代入曲线的参数方程得点的坐标,然后把直线的参数方程化为普通方程,根据曲线的参数方程设出的坐标,利用中点坐标公式表示出的坐标,利用点到直线的距离公式标准处到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.

试题解析:(1

为圆心是,半径是1的圆, 为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆.

2)当时, ,故

的普通方程为的距离

所以当时, 取得最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网