题目内容
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA= ,cosC=
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
【答案】
(1)解:在△ABC中,因为cosA= ,cosC= ,所以sinA= ,sinC= ,
从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC= =
由正弦定理 ,得AB= = =1040m.
所以索道AB的长为1040m.
(2)解:假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得
d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)× =200(37t2﹣70t+50)=200[37(t﹣ )2+ ],
因0≤t≤ ,即0≤t≤8,故当t= min时,甲、乙两游客距离最短.
(3)解:由正弦定理 ,得BC= = =500m,
乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.
设乙步行的速度为 v m/min,由题意得﹣3≤ ≤3,解得 ,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[ ]范围内.
【解析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(3)设乙步行的速度为 v m/min,从而求出v的取值范围.
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.