题目内容
【题目】如图,在中, ,角的平分线交于点,设.(1)求;(2)若,求的长.
【答案】(1)(2)
【解析】试题分析:(1)由α为三角形BAD中的角,根据sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而利用二倍角的正弦函数公式求出sin∠BAC与cos∠BAC的值,即为sin2α与cos2α的值,sinC变形为,利用诱导公式,以及两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出sinC的值;
(2)利用正弦定理列出关系式,将sinC与sin∠BAC的值代入得出,利用平面向量的数量积运算法则化简已知等式左边,将表示出的AB代入求出BC的长,再利用正弦定理即可求出AC的长.
试题解析:
解:(1)∵, ,
∴,
则,
∴,
∴.
(2)由正弦定理,得,即,∴,
又,∴,由上两式解得,
又由得,∴.
【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄 (单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.