题目内容
【题目】在直角坐标系中,点,是曲线上的任意一点,动点满足
(1)求点的轨迹方程;
(2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.
【答案】(1);(2)存在点符合题意.
【解析】
(1)设,,利用相关点代入法得到点的轨迹方程;
(2)设存在点,使得,则,因为直线l的倾斜角不可能为,故设直线l的方程为,利用斜率和为0,求得,从而得到定点坐标.
(1)设,,
则,,.
又,则即
因为点N为曲线上的任意一点,
所以,
所以,整理得,
故点C的轨迹方程为.
(2)设存在点,使得,所以.由题易知,直线l的倾斜角不可能为,故设直线l的方程为,
将代入,得.设,,则,.因为,所以,即,所以.故存在点,使得.
练习册系列答案
相关题目