题目内容
【题目】已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为( )
A.B.C.D.1
【答案】B
【解析】
根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.
根据题意,设,
则
由代入可得
即点的轨迹方程为
又因为,变形可得,即,且
所以由平面向量基本定理可知三点共线,如下图所示:
所以的最小值即为到直线的距离最小值
根据圆的切线性质可知,当与圆相切时,有最大值
设切线的方程为,化简可得
由切线性质及点到直线距离公式可得,化简可得
即
所以切线方程为或
所以当变化时, 到直线的最大值为
即的最大值为
故选:B
练习册系列答案
相关题目