题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)设,且,求证:.
【答案】(1)讨论见解析(2)证明见解析
【解析】
(1)求出函数的定义域以及函数的导数,然后根据的正负性进行分类讨论,求出函数的单调区间;
(2)当时,求出函数的导数,可以确定的单调性,设,可以证明出,根据,可以证明出,根据同角的三角函数关系式可以得到,最后根据余弦函数的单调性进行证明即可.
(1)的定义域为,,
当时,恒成立,在上单调递减;
当时,由解得,由解得,所以在上单调递增,在上单调递减.
综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减;
(2)当时,,,则在上单调递增.设,且,则,即,所以,可得.因为,所以,所以,即.因为,所以,所以,所以.综上可得,,且,即.
【题目】某市据实际情况主要采取以下四种扶贫方式:第一,以工代赈方式,指政府投资建设基础设施工程,组织贫困地区群众参加工程建设并获得劳务报酬,第二,整村推进方式指以贫困村为具体帮扶对象,帮扶对口到村,资金安排到村,扶贫效益到户,第三,科技扶贫方式,指组织科技人员深入贫困乡村实地指导、技术培训等传授科技知识,第四,移民搬迁方式,指对目前极少数居住在生存条件恶劣、自然资源贫乏地区的特困人口,实行自愿移民,该市为了2020年更好的完成精准扶贫各项任务,2020年初在全市贫困户(分一般贫困户和“五特”户两类)中随机抽取了5000户就目前的主要四种扶贫方式行了问卷调查,支持每种扶贫方式的结果如表:
调查的贫困户 | 支持以工代赈户数 | 支持整村推进户数 | 支持科技扶贫户数 | 支持移民搬迁户数 |
一般贫困户 | 1200 | 1600 | 200 | |
五特户(五保户和特困户) | 100 | 100 |
已知在被调查的5000户中随机抽取一户支持整村推进的概率为0.36.
(Ⅰ)现用分层抽样的方法在所有参与调查的贫困户中抽取50户进行深入访谈,问应在支持科技扶贫户数中抽取多少户?
(Ⅱ)虽然“五特”户在全市的贫困户所占比例不大,但本次调查要有意义,其中这次调查的“五特”户户数不能低于被调查总户数的9.2%,已知,求本次调查有意义的概率是多少?