题目内容
【题目】如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点.
(1)求证:;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到.
(2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解.
(1)因为,故,
所以四边形为菱形,
而平面,故.
因为,故,
故,即四边形为正方形,故.
(2)依题意,.在正方形中,,
故以为原点,所在直线分别为、、轴,
建立如图所示的空间直角坐标系;
如图所示:
不纺设,
则,
又因为,所以.
所以.
设平面的法向量为,
则,
即,
令,则.于是.
又因为,
设直线与平面所成角为,
则,
所以直线与平面所成角的正弦值为.
练习册系列答案
相关题目