题目内容
【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2 .
【答案】解:(Ⅰ)∵f′(x)= ,x∈(0,+∞), 且y=f(x)在(1,f(1))处的切线与x轴平行,
∴f′(1)=0,
∴k=1;
(Ⅱ)由(Ⅰ)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),
令h(x)=1﹣x﹣xlnx,x∈(0,+∞),
当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0,
又ex>0,
∴x∈(0,1)时,f′(x)>0,
x∈(1,+∞)时,f′x)<0,
∴f(x)在(0,1)递增,在(1,+∞)递减;
证明:(Ⅲ)∵g(x)=(x2+x)f′(x),
∴g(x)= (1﹣x﹣xlnx),x∈(0,+∞),
∴x>0,g(x)<1+e﹣21﹣x﹣xlnx< (1+e﹣2),
由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),
∴h′(x)=﹣(lnx﹣lne﹣2),x∈(0,+∞),
∴x∈(0,e﹣2)时,h′(x)>0,h(x)递增,
x∈(e﹣2 , +∞)时,h(x)<0,h(x)递减,
∴h(x)max=h(e﹣2)=1+e﹣2 ,
∴1﹣x﹣xlnx≤1+e﹣2 ,
设m(x)=ex﹣(x+1),
∴m′(x)=ex﹣1=ex﹣e0 ,
∴x∈(0,+∞)时,m′(x)>0,m(x)递增,
∴m(x)>m(0)=0,
∴x∈(0,+∞)时,m(x)>0,
即 >1,
∴1﹣x﹣xlnx≤1+e﹣2< (1+e﹣2),
∴x>0,g(x)<1+e﹣2
【解析】(Ⅰ)先求出f′(x)= ,x∈(0,+∞),由y=f(x)在(1,f(1))处的切线与x轴平行,得f′(1)=0,从而求出k=1;(Ⅱ)由(Ⅰ)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),求出h(x)的导数,从而得f(x)在(0,1)递增,在(1,+∞)递减;(Ⅲ)因g(x)= (1﹣x﹣xlnx),x∈(0,+∞),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e﹣2 , 设m(x)=ex﹣(x+1),得m(x)>m(0)=0,进而1﹣x﹣xlnx≤1+e﹣2< (1+e﹣2),问题得以证明.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微
信交流”的态度进行调查,随机抽取了人,他们年龄的频数分布及对 “使用微信交流”赞成的人数如
下表:(注:年龄单位:岁)
年龄 | ||||||
频数 | ||||||
赞成人数 |
(1))若以“年龄岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于岁的人数 | 年龄低于岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2))若从年龄在, 的别调查的人中各随机选取两人进行追踪调查,记选中的人中赞成“使用微信交流”的人数为,求随机变量的分布列及数学期望.
附:参考数据如下:
参考公式: ,其中.