题目内容

【题目】已知等差数列{an}满足a2=2,a5=8.
(1)求{an}的通项公式;
(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4 , 求{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的公差为d

∵a2=2,a5=8

∴a1+d=2,a1+4d=8解得 a1=0,d=2

∴数列{an}的通项公式an=a1+(n﹣1)d=2n﹣2


(2)解:设各项均为正数的等比数列{bn}的公比为q(q>0)

由(1)知an=2n﹣2

b1=1,b2+b3=a4=6

∴q≠1

∴q=2或q=﹣3(舍去)

∴{bn}的前n项和Tn=2n﹣1


【解析】(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n﹣5)d,求出通项公式;(2)设各项均为正数的等比数列{bn}的公比为q(q>0),利用等比数列的通项公式可求首项b1及公比q,代入等比数列的前n项和公式可求Tn.
【考点精析】根据题目的已知条件,利用等差数列的通项公式(及其变式)和等比数列的前n项和公式的相关知识可以得到问题的答案,需要掌握通项公式:;前项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网