题目内容
【题目】已知函数f(x)=ax3﹣6x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则a的取值范围是( )
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4 )
D.(4 ,+∞)
【答案】C
【解析】解:当a=0时,f(x)=﹣12x2+1=0,解得x=± ,函数f(x)有两个零点,不符合题意,应舍去; 当a>0时,令f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= >0,列表如下:
x | (﹣∞,0) | 0 | (0, ) | ( ,+∞) | |
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
∵x→﹣∞,f(x)→﹣∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,
不符合条件:f(x)存在唯一的零点x0 , 且x0>0,应舍去.
当a<0时,f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= <0,列表如下:
x | (﹣∞, ) | ( ,0) | 0 | (0,+∞) | |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 单调递减 | 极小值 | 单调递增 | 极大值 | 单调递减 |
而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,
化为a2>32,
∵a<0,∴a<﹣4 .
综上可知:a的取值范围是(﹣∞,﹣4 ).
故选:C.
练习册系列答案
相关题目
【题目】如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )
7 | 9 | ||||
8 | 4 | 4 | 6 | 4 | 7 |
9 | 3 |
A.84,4.84
B.84,1.6
C.85,1.6
D.85,4