题目内容

11.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则有${b_1}•{b_2}•…•{b_n}={b_1}•{b_2}•…•{b_{17-n}}(n<17,n∈{N^*})$.

分析 根据类比的方法,和类比积,加类比乘,由此类比即可得出结论.

解答 解:在等差数列{an}中,若a10=0,有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,
∴在等比数列{bn}中,若b9=1,则有等式${b_1}•{b_2}•…•{b_n}={b_1}•{b_2}•…•{b_{17-n}}(n<17,n∈{N^*})$.
故答案为:${b_1}•{b_2}•…•{b_n}={b_1}•{b_2}•…•{b_{17-n}}(n<17,n∈{N^*})$.

点评 本题考查了类比推理的方法和应用问题,解题时应掌握好类比推理的定义及等差、等比数列之间的共性,由此类比得出结论,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网