题目内容
【题目】对于平面上任意个点构成的点集,如果其中任意两点之间的距离均已确定,那么就称这个点集是“稳定的”.求证:在格点的平面点集中,无三点共线,且其中的个两点之间的距离已被确定,那么点集就是“稳定的”.
【答案】见解析
【解析】
先约定,确定距离的两点用边相连.我们用数学归纳法来证明本题.
当时,,四点之间只有个距离,它们均已确定,故命题成立.
设时命题成立.当时,点集共连了条边.
设是这个点集中“度”(即自该点出发的边数)最小的点,
则其度 .
∴.
于是,剩下个点之间至少连条边.按归纳假设这和点的集合是稳定的.
又,
故至少与中的3点相连.不妨设与相连,是,,.易证是唯一确定的.若不然,设是另外一点,也有,,,则将都在的垂直平均线上.这与无三点共线的假定矛盾,于是都可确定,点集是稳定的,即当时命题也成立.
综上所述,命题得证.
【题目】一商场对5年来春节期间服装类商品的优惠金额(单位:万元)与销售额(单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
日期 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)画出散点图,并判断服装类商品的优惠金额与销售额是正相关还是负相关;
(2)根据表中提供的数据,求出与的回归方程;
(3)若2019年春节期间商场预定的服装类商品的优惠金额为10万元,估计该商场服装类商品的销售额.
参考公式:
参考数据:
【题目】下面是水稻产量与施化肥量的一组观测数据(单位:千克/亩):
施化肥量 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
水稻产量 | 320 | 330 | 360 | 410 | 460 | 470 | 480 |
(1)将上述数据制成散点图;
(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?
【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.一媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取n名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:
组数 | 分组(单位:岁) | 频数 | 频率 |
1 | 5 | 0.05 | |
2 | 20 | 0.20 | |
3 | a | 0.35 | |
4 | 30 | b | |
5 | 10 | 0.10 | |
合计 | n | 1.00 |
(1)求出表中a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名1民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.
【题目】某校医务室欲研究昼夜温差大小与高三患感冒人数多少之间的关系,他们统计了2019年9月至2020年1月每月8号的昼夜温差情况与高三因患感冒而就诊的人数,得到如下资料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
昼夜温差 | 5 | 8 | 12 | 13 | 16 |
就诊人数 | 10 | 16 | 26 | 30 | 35 |
该医务室确定的研究方案是先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.假设选取的是2019年9月8日与2020年1月8日的2组数据.
(1)求就诊人数关于昼夜温差的线性回归方程 (结果精确到0.01)
(2)若由(1)中所求的线性回归方程得到的估计数据与所选出的检验数据的误差均不超过3人,则认为得到的线性回归方程是理想的,试问该医务室所得线性回归方程是否理想?
参考公式:,.