题目内容
【题目】已知平面向量,满足:||=2,||=1.
(1)若(2)()=1,求的值;
(2)设向量,的夹角为θ.若存在t∈R,使得,求cosθ的取值范围.
【答案】(1)-1(2)cosθ∈[﹣1,]∪[,1]
【解析】
(1)利用数量积的运算性质,结合数量积的定义进行求解即可;
(2)对进行平方,然后根据平面向量的运算性质,结合数量积的定义、一元二次方程根的判别式、余弦函数的有界性进行求解即可.
(1)若(2)()=1,则1,
又因为||=2,||=1,所以42=1,所以1;
(2)若,则1,
又因为||=2,||=1,所以t2+2()t+3=0,即t2+4tcosθ+3=0,
所以△=16cos2θ﹣12≥0,解得cosθ或θ,
所以cosθ∈[﹣1,]∪[,1].
练习册系列答案
相关题目
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+)+b来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?