题目内容

10.参数方程$\left\{\begin{array}{l}{x=\frac{{3t}^{2}}{1+{t}^{2}}}\\{y=\frac{5-{t}^{2}}{1{+t}^{2}}}\end{array}\right.$(t为参数)表示的图形为2x+y-5=0(0≤x<3).

分析 由题意求出x的范围,消去参数t得答案.

解答 解:由x=$\frac{3{t}^{2}}{1+{t}^{2}}$知,t2=0时x=0,t2≠0时$x=\frac{3}{1+\frac{1}{{t}^{2}}}<3$,
∴0≤x<3.
再由$\left\{\begin{array}{l}{x=\frac{{3t}^{2}}{1+{t}^{2}}}\\{y=\frac{5-{t}^{2}}{1{+t}^{2}}}\end{array}\right.$,得$y=\frac{5}{1+{t}^{2}}-\frac{{t}^{2}}{1+{t}^{2}}=\frac{5}{1+{t}^{2}}-\frac{x}{3}$,∴$1+{t}^{2}=\frac{15}{x+3y}$,
则$x=\frac{3(\frac{15}{x+3y}-1)}{\frac{15}{x+3y}}=\frac{15-x-3y}{5}$,整理得:2x+y-5=0(0≤x<3).
故参数方程$\left\{\begin{array}{l}{x=\frac{{3t}^{2}}{1+{t}^{2}}}\\{y=\frac{5-{t}^{2}}{1{+t}^{2}}}\end{array}\right.$(t为参数)表示的图形为:2x+y-5=0(0≤x<3).

点评 本题考查参数方程化普通方程,考查计算能力,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网