题目内容
2.在极坐标系中,△ABC的3个顶点的极坐标为A(ρ1,θ1),B=(ρ2,θ2),C(ρ3,θ3),求证:△ABC的面积为S=$\frac{1}{2}$|ρ1ρ2sin(θ2-θ1)+ρ2ρ3sin(θ3-θ2)+ρ3ρ1sin(θ1-θ3)|分析 化极坐标为直角坐标,求出AB的距离,写出AB所在直线方程,由点到直线距离公式求出C到直线AB的距离,代入三角形面积公式整理得答案.
解答 证明:由A(ρ1,θ1),B(ρ2,θ2),C(ρ3,θ3),得
A(ρ1cosθ1,ρ1sinθ1),B(ρ2cosθ2,ρ2sinθ2),C(ρ3cosθ3,ρ3sinθ3),
|AB|=$\sqrt{({ρ}_{1}cos{θ}_{1}-{ρ}_{2}cos{θ}_{2})^{2}+({ρ}_{1}sin{θ}_{1}-{ρ}_{2}sin{θ}_{2})^{2}}$=$\sqrt{{{ρ}_{1}}^{2}+{{ρ}_{2}}^{2}-2{ρ}_{1}{ρ}_{2}cos({θ}_{1}-{θ}_{2})}$.
AB所在直线方程为$\frac{y-{ρ}_{1}sin{θ}_{1}}{{ρ}_{2}sin{θ}_{2}-{ρ}_{1}sin{θ}_{1}}=\frac{x-{ρ}_{1}cos{θ}_{1}}{{ρ}_{2}cos{θ}_{2}-{ρ}_{1}cos{θ}_{1}}$,
整理得:(ρ2sinθ2-ρ1sinθ1)x-(ρ2cosθ2-ρ1cosθ1)y+ρ1ρ2sin(θ1-θ2)=0.
则C到AB的距离d=$\frac{|{ρ}_{3}cos{θ}_{3}({ρ}_{2}sin{θ}_{2}-{ρ}_{1}sin{θ}_{1})-{ρ}_{3}sin{θ}_{3}({ρ}_{2}cos{θ}_{2}-{ρ}_{1}cos{θ}_{1})+{ρ}_{1}{ρ}_{2}sin({θ}_{1}-{θ}_{2})|}{\sqrt{({ρ}_{2}sin{θ}_{2}-{ρ}_{1}sin{θ}_{1})^{2}+({ρ}_{2}cos{θ}_{2}-{ρ}_{1}cos{θ}_{1})^{2}}}$.
则:△ABC的面积为S=$\frac{1}{2}$|AB|d=|ρ1ρ2sin(θ2-θ1)+ρ2ρ3sin(θ3-θ2)+ρ3ρ1sin(θ1-θ3)|.
点评 本题考查点的极坐标与直角坐标的互化,考查了点到直线距离公式的应用,训练了三角形面积的求法,考查计算能力,是中档题.
A. | 63 | B. | 48 | C. | 42 | D. | 36 |