题目内容

设E,F是正方体AC1的棱AB和D1C1的中点,在正方体的12条面对角线中,与截面A1ECF成60°角的对角线的数目是(  )
A.0B.2 C.4 D.6
C

分析:先把六个面分为三组,在一组组的进行研究,找到直线与截面法向量的夹角即可得到结论.

解:首先,把六个面分成三组,AA1D1D和BB1C1C对截面的关系是一样的,其他四个是一样的,
以点D为原点,AD所在直线为X轴,DC所在直线为Y轴,DD1所在直线为Z轴,
设正方体棱长为2;
则A(2,0,0),D(0,0,0),B(2,2,0),C(0,2,0),E(2,1,0),
F(0,1,2),A1(2,0,2),B1(2,2,2,),C1(0,2,2),D1(0,0,2);
=(-2,1,0),=((0,1,2),=(-2,2,0),=(-2,-2,0),=(-2,0,-2),=(0,-2,-2);=(0,2,-2)
因为要想面对角线截面A1ECF成60°角,需要直线与法向量的夹角为30度,即其余弦值为±
设截面A1ECF的法向量为=(x,y,z),
??=(1,2,1),且||=
因为cos<>===≠±
cos<>==-
cos<>=≠±
cos(>==-
cos<>=≠±
再看AA1D1D这个面里,
AD1与EF平行,不是,
所以,一共四条.
故选:C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网