题目内容
【题目】对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3﹣3x2+ ,则g( )+g( )+…+g( )=( )
A.100
B.50
C.
D.0
【答案】D
【解析】解:∵g(x)=2x3﹣3x2+ ,
∴g′(x)=6x2﹣6x,g'(x)=12x﹣6,
由g'(x)=0,得x= ,
又f( )=2× =0,
∴故函数g(x)关于点( ,0)对称,
∴g(x)+g(1﹣x)=0,
∴g( )+g( )+…+g( )=49× =f( )=0.
故选:D.
【考点精析】根据题目的已知条件,利用函数的值的相关知识可以得到问题的答案,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
练习册系列答案
相关题目