题目内容

已知等差数列前三项为a,4,3a,前n项的和为sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn
(1)设该等差数列为{an},则a1=a,a2=4,a3=3a,
由已知有a+3a=2×4,解得a1=a=2,公差d=a2-a1=4-2=2,
将sk=2550代入公式sk=ka1+
k(k-1)
2
•d

得,2k+
k(k-1)
2
×2=2550
,解得:k=50,k=-51(舍去),
∴a=2,k=50;
(2)由sn=n•a1+
n(n-1)
2
•d
,得sn=2n+
n(n-1)
2
×2
=n(n+1),
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1

1
s1
+
1
s2
+…+
1
sn

=
1
1×2
+
1
2×3
+…+
1
n(n+1)

=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1

=
n
n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网