题目内容
【题目】在直角坐标系中,直线l的参数方程为(t为参数,),以坐标原点为极点,轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.
(1)当时,写出直线l的普通方程及曲线C的直角坐标方程;
(2)已知点,设直线l与曲线C交于A,B两点,试确定的取值范围.
【答案】(1),;(2)
【解析】
(1) 当时,利用消参法得到直线l的普通方程,利用及得到曲线C的直角坐标方程; (2) 将代入中并整理得,借助韦达定理表示,利用正弦函数的有界性求出取值范围.
(1)当时,直线的参数方程为
.
消去参数t得.
由曲线C的极坐标方程为.
得,
将,及代入得,
即
(2)由直线的参数方程为(为参数,)可知直线是过点P(-1,1)且倾斜角为的直线,又由(1)知曲线C为椭圆,所以易知点P(-1,1)在椭圆C内,
将代入中并整理得
,
设A,B两点对应的参数分别为,
则
所以
因为,所以,
所以
所以的取值范围为.
练习册系列答案
相关题目