题目内容
【题目】某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:
汽车型号 | I | II | III | IV | V |
回访客户(人数) | 250 | 100 | 200 | 700 | 350 |
满意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.
假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.
(1)从所有的回访客户中随机抽取1人,求这个客户满意的概率;
(2)从I型号和V型号汽车的所有客户中各随机抽取1人,设其中满意的人数为,求的分布列和期望;
(3)用 “”, “”, “”, “”, “”分别表示I, II, III, IV, V型号汽车让客户满意, “”, “”, “”, “”, “” 分别表示I, II, III, IV, V型号汽车让客户不满意.写出方差的大小关系.
【答案】(1) (2)见解析;(3)
【解析】
(1)求出样本中的回访客户的总数和满意的客户人数,即可求出概率;
(2)由题求出满意的人数为的分布列,继而求出期望;
(3)根据公式直接得出结果,然后作比较.
(1)由题意知,样本中的回访客户的总数是,
满意的客户人数,
故所求概率为.
(2).
设事件为“从I型号汽车所有客户中随机抽取的人满意”,
事件为“从V型号汽车所有客户中随机抽取的人满意”,且、为独立事件.
根据题意,估计为0.5,估计为0.2 .
则;
;
.
的分布列为
的期望
(3)由题,I型号的平均数为0.5,所以=
同理=
同理=0.24;=0.21;=0.16
所以.
【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早晩读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成如表:
考试分数 | , | , | , | , | , | , |
频数 | 5 | 10 | 15 | 5 | 10 | 5 |
赞成人数 | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使测试优秀率为,则优秀分数线应定为多少分?
(2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有的把握认为赞成与否的态度与成绩是否优秀有关系.
参考公式及数据:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表:
摄氏温度 | ||||||||
热饮杯数 |
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里。因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少。统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量、,如果,那么负相关很强;如果,那么正相关很强;如果,那么相关性一般;如果,那么相关性较弱。请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
(ii)记为不超过的最大整数,如,.对于(i)中求出的线性回归方程,将视为气温与当天热饮销售杯数的函数关系.已知气温与当天热饮每杯的销售利润的关系是 (单位:元),请问当气温为多少时,当天的热饮销售利润总额最大?
(参考公式),,
(参考数据),, .
,,,.