题目内容
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
【答案】(Ⅰ) (Ⅱ) y=x-1
【解析】
(Ⅰ)由椭圆C:1(a>b>0)过点A(0,1),且椭圆的离心率为,列方程组求出a,b,由此能求出椭圆C的方程.
(Ⅱ)设直线l的方程为y=x+m,P(3,yP),由,得4x2+6mx+3m2﹣3=0,利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l的方程.
(Ⅰ)由题意得
解得.
所以椭圆的方程为.
(Ⅱ)设直线l的方程为y=x+m,
由得.
令,得.
,.
因为是以为顶角的等腰直角三角形,
所以平行于轴.
过做的垂线,则垂足为线段的中点.
设点的坐标为,则.
由方程组解得,即.
而,
所以直线的方程为y=x-1.
练习册系列答案
相关题目