ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªa£¾b£¾0£¬ÍÖÔ²C1µÄ·½³ÌΪ$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¬Ë«ÇúÏßC2µÄ·½³ÌΪ$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¬C1ÓëC2µÄÀëÐÄÂÊÖ®»ýΪ$\frac{{\sqrt{3}}}{2}$£¬ÔòC2µÄ½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©A£® | $\sqrt{2}$x¡Ày=0 | B£® | x¡À$\sqrt{2}$y=0 | C£® | 2x¡Ày=0 | D£® | x¡À2y=0 |
·ÖÎö ͨ¹ýÍÖÔ²ÓëË«ÇúÏߵķ½³Ì¿ÉµÃ¸÷×ÔµÄÀëÐÄÂÊ£¬»¯¼ò¼´µÃ½áÂÛ£®
½â´ð ½â£º¡ßÍÖÔ²C1µÄ·½³ÌΪ$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¬
¡àÍÖÔ²C1µÄÀëÐÄÂÊe1=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$£¬
¡ßË«ÇúÏßC2µÄ·½³ÌΪ$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¬
¡àË«ÇúÏßC2µÄÀëÐÄÂÊe2=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$£¬
¡ßC1ÓëC2µÄÀëÐÄÂÊÖ®»ýΪ$\frac{{\sqrt{3}}}{2}$£¬
¡à$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$•$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{3}{4}$=$[1-£¨\frac{b}{a}£©^{2}][1+£¨\frac{b}{a}£©^{2}]$=1-$£¨\frac{b}{a}£©^{4}$£¬
ÓÖ¡ßa£¾b£¾0£¬¡à$\frac{b}{a}$=$\frac{1}{\sqrt{2}}$£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÇóÍÖÔ²µÄÀëÐÄÂÊÎÊÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÔĶÁÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÈôÊä³öµÄ½á¹ûs=9£¬ÔòͼÖÐÁâÐÎÄÚÓ¦¸ÃÌîдµÄÄÚÈÝÊÇ£¨¡¡¡¡£©
A£® | n£¼2 | B£® | n£¼3 | C£® | n£¼4 | D£® | a£¼3 |
18£®ÒÑÖªµãPÔÚÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏ£¬F1F2·Ö±ðÊÇÆä×ó¡¢ÓÒ½¹µã£¬Èô|PF1|=2|PF2|£¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬$\frac{1}{3}$] | B£® | £¨$\frac{1}{3}$£¬1£© | C£® | £¨0£¬$\frac{1}{3}$£© | D£® | [$\frac{1}{3}$£¬1£© |