题目内容
【题目】已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且满足.
(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于,两点,为直线上一点,且满足,若的面积为,求直线的方程.
【答案】(1);(2)或
【解析】分析:(1)设,则,利用,即可求解轨迹的方程;
(II)设的方程为,联立方程组,求得,又由,得到点,在利用弦长公式和点到直线的距离公式,即可表达的面积,求得的值,进而得到直线的方程;
详解:(1)设,则,
,,
,,即轨迹的方程为.
(2)法一:显然直线的斜率存在,设的方程为,
由,消去可得:,
设,,,
,,
即
,
,即
,,即,
,
到直线的距离,
,解得,
直线的方程为或.
法2:(Ⅱ)设,AB的中点为
则
直线的方程为,
过点A,B分别作,因为为AB 的中点,
所以在中,
故是直角梯形的中位线,可得,从而
点到直线的距离为:
因为E点在直线上,所以有,从而
由解得
所以直线的方程为或.
练习册系列答案
相关题目