题目内容
【题目】(题文)某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求、、的值;
(2)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列和期望.
【答案】(1)见解析;(2)见解析
【解析】
试题分析:(1)频率分布直方图中各小矩形的面积为该组的频率,根据各频率和为1,可得第二组的频率,从而可求得该组小矩形的高,从而可将图补充完整.根据频率等于频数除以总数由第一组可求得总数,从而可求得的值.(2)岁年龄段的“低碳族”与岁年龄段的“低碳族”的比值可得18人中应在各组抽取的人数.可知随机变量服从超几何分布,根据超几何分布的概率公式可求得.从而可得其分布列及期望值.
试题解析:(1)第二组的频率为,所以高为.
频率直方图如下:
第一组的人数为,频率为,所以.
第二组的频率为,所以第二组的人数为,所以.
第四组的频率为,第四组的人数为,
所以.
(2)因为岁年龄段的“低碳族”与岁年龄段的“低碳族”的比值为,所以采用分层抽样法抽取18人,岁中有12人,岁中有6人.
随机变量服从超几何分布.
,,
,.
所以随机变量的分布列为
∴数学期望.
【题目】某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.
(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;
师资力量(优秀) | 师资力量(非优秀) | 合计 | |
基础设施建设(优秀) | |||
基础设施建设(非优秀) | |||
合计 |
(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.
附:
【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
男大学生 | 610 | ||
女大学生 | 90 | ||
合计 | 800 |
(1)根据题意完成表格;
(2)是否有的把握认为愿意做志愿者工作与性别有关?