题目内容
【题目】底面为菱形且侧棱垂直于底面的四棱柱中, , 分别是, 的中点,过点, , , 的平面截直四棱柱,得到平面四边形, 为的中点,且,当截面的面积取最大值时, 的值为( )
A. B. C. D.
【答案】C
【解析】由平面与平面平行,得与平行,同理可得与平行, 截面四边形是平行四边形,又,可知截面四边形是菱形,因此,设,则, ,由余弦定理得,可得, ,又 ,当且仅当,即时, 最大,此时也最大,并求得, ,因此 ,故选C.
【方法点晴】本题主要考查待直棱柱的性质与截面性质以及最值问题,属于难题.解决高中数学中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是用的这种思路,利用配方法求截面积最值的.
【题目】已知椭圆的左焦点为,过点的直线交椭圆于两点,为坐标原点.
(1)若的斜率为,为的中点,且的斜率为,求椭圆的方程;
(2)连结并延长,交椭圆于点,若椭圆的长半轴长是大于的给定常数,求的面积的最大值.
【题目】207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)求的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(3)设函数(其中表示的方差)是评估安全教育方案成效的一种模拟函数.当时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?