题目内容

【题目】底面为菱形且侧棱垂直于底面的四棱柱 分别是 的中点,过点 的平面截直四棱柱得到平面四边形 的中点当截面的面积取最大值时 的值为

A. B. C. D.

【答案】C

【解析】由平面与平面平行平行,同理可得平行 截面四边形是平行四边形,又可知截面四边形是菱形因此 由余弦定理得,可得 ,又 当且仅当 最大,此时也最大,并求得 因此 故选C.

【方法点晴】本题主要考查待直棱柱的性质与截面性质以及最值问题,属于难题.解决高中数学中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是用的这种思路,利用配方法求截面积最值的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网