题目内容
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)已知点,直线与曲线交于两点,且,求的值.
【答案】(1);(2)
【解析】
(1)由曲线的极坐标方程得,利用可得曲线的直角坐标方程;(2)由直线的参数方程化为普通方程得,再求得直线的参数方程为(为参数),代入,整理得,利用韦达定理以及直线参数方程的几何意义可得结果.
(1)由曲线的极坐标方程得.
∵
∴曲线的直角坐标方程为.
(2)由直线的参数方程为(为参数),化为普通方程得.
∵在直线上
∴直线的参数方程可设为(为参数),代入,整理得
,设两点对应的参数分别为,,则,∵,∴(a>0),∴.
故的值为.
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”
【题目】某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | A | B | C |
产品数量(件) | 1 300 | ||
样本容量(件) | 130 |
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是( )
A.80B.800C.90D.900