题目内容
已知三棱柱中,平面⊥平面,⊥,.
(1)求证:⊥平面;
(2)求平面与平面所成二面角的余弦值.
已知集合,,若,则 .
已知,函数则等于( )
A. B. C.2 D.
设双曲线(,)的上、下焦点分别为,,过点的直线与双曲线交于,两点,且,,则此双曲线的离心率为( )
A.3 B. C. D.
如图,长方体中,,,点,,分别是,,的中点,则异面直线与所成的角是 .
在四面体中,,,,,则该四面体外接球的表面积是( )
A. B. C. D.
已知函数,则下列叙述错误的是( )
A.的最大值是1
B.是奇函数
C.在上是增函数
D.是以为最小正周期的函数
已知函数是定义在上的偶函数,且当时,,那么当时,函数的解析式是______________.