题目内容
【题目】在平面直角坐标系中,曲线的参数方程为,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段 的延长线上,且满足,点的轨迹为.
(1)求曲线,的极坐标方程;
(2)设点的极坐标为,求面积的最小值。
【答案】(1),;(2)2
【解析】
(1)将曲线的参数方程通过消参化为普通方程,再利用互化公式,即可求出其极坐标方程;分别设出的极坐标,利用以及极径的意义,即可求出点的轨迹的极坐标方程.
(2)在极坐标系下,结合极径以及极角的几何意义,运用三角形的面积公式建立关于面积的函数,从而求出其最小值.
(1)因为的参数方程为,
消去参数得,则一般式为,
由,可得的极坐标方程为;
设,则,
而为曲线上的动点,则,
因为点在线段 的延长线上,则设,有,
因为,
所以得,即,
所以的极坐标方程为.
(2)由(1)可知,,
边上的高为,
则,
因为,所以当时,.
练习册系列答案
相关题目
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”