题目内容
【题目】设,已知定义在R上的函数在区间内有一个零点, 为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)设,函数,求证: ;
(Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且 满足.
【答案】(Ⅰ)增区间是, ,递减区间是.(Ⅱ)见解析;(III)见解析.
【解析】试题分析:由于为,所以判断的单调性,需要对二次求导,根据的导数的符号判断函数的单调性,给出单调区间;由,得 ,.令函数, 分别求导证明.有关零点问题,利用函数的单调性了解函数的图像情况,对极值作出相应的要求可控制零点的个数.
试题解析:(Ⅰ)解:由,可得,
进而可得.令,解得,或.
当x变化时, 的变化情况如下表:
x | |||
+ | - | + | |
↗ | ↘ | ↗ |
所以, 的单调递增区间是, ,单调递减区间是.
(Ⅱ)证明:由,得,
.
令函数,则.由(Ⅰ)知,当时, ,故当时, , 单调递减;当时, , 单调递增.因此,当时, ,可得.
令函数,则.由(Ⅰ)知, 在上单调递增,故当时, , 单调递增;当时, , 单调递减.因此,当时, ,可得.
所以, .
(III)证明:对于任意的正整数 , ,且,
令,函数.
由(II)知,当时, 在区间内有零点;
当时, 在区间内有零点.
所以在内至少有一个零点,不妨设为,则.
由(I)知在上单调递增,故,
于是.
因为当时, ,故在上单调递增,
所以在区间上除外没有其他的零点,而,故.
又因为, , 均为整数,所以是正整数,
从而.
所以.所以,只要取,就有.
练习册系列答案
相关题目