题目内容
【题目】已知,其中常数.
(1)当时,求函数的极值;
(2)若函数有两个零点,求证: ;
(3)求证: .
选做题:
【答案】(1) 有极小值,没有极大值.(2)证明见解析;(3)证明见解析.
【解析】试题分析:先写出函数的定义域,(1)由,求出的导数,再求出的单调性,即可求得极值;(2)先证明:当恒成立时,有成立,若,则显然成立;若,运用参数分离,构造新函数通过求导数及单调性,结合函数零点存在定理,即可得证;(3)讨论当当时, 恒成立,可设设,求出导数,单调区间及最大值,运用不等式的性质,即可得证.
试题解析:函数的定义域为,
(1)当时, , ,
而在上单调递增,又,
当时, ,则在上单调递减;
当时, ,则在上单调递增,所以有极小值,没有极大值.
(2)先证明:当恒成立时,有成立.
若,则显然成立;
若,由得,令,
则,
令,由得在上单调递增,
又∵,所以在上为负,在上为正,
∴在上递减,在上递增
∴,从而.
因而函数若有两个零点,则,所以,
由得,则
,
∴在上单调递增,
∴,
∴在上单调递增
∴,则
∴
由得,则
∴,
综上得.
(3)由(2)知当时, 恒成立,所以,
即,
设,则,
当时, ,所以在上单调递增;
当时, ,所以在上单调递减;
所以的最大值为,即,
因而,
所以,即
点睛:导数是研究函数的单调性、极值(最值)最有效的工具对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.
练习册系列答案
相关题目