题目内容
【题目】在如图所示的几何体中,四边形是正方形, 平面, 分别为的中点,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)求三棱锥与四棱锥的体积之比.
【答案】(1)(2)证明过程详见解析;(3)1:4
【解析】试题分析:(1)欲证平面平面,根据面面垂直的判定定理可知在平面内一直线与平面垂直,而根据线面垂直的判定定理可知平面平面,满足定理条件;(2)证明,利用线面平行的判定定理,即可证明平面;(3)不妨设,求出,得到 ,求出PD,根据面,所以即为点到平面的距离,根据三棱锥的体积公式求出体积得到 的比值.
试题解析:
(1)证明:∵分别为的中点,
∴,
又∵四边形是正方形,
∴,∴,
∵在平面外, 在平面内,
∴平面, 平面,
又∵都在平面内且相交,
∴平面平面.
(2)证明:由已知平面,
∴平面.
又平面,∴.
∵四边形为正方形,∴,
又,∴平面,
在中,∵分别为的中点,
∴,∴平面.
又平面,∴平面平面.
(3)解:∵平面,四边形为正方形,不妨设,则.
∵平面,且,
∴即为点到平面的距离,
∴.
练习册系列答案
相关题目