题目内容
【题目】设A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R.如果A∩B=B,求实数a的取值范围.
【答案】a=2或a≤-2.
【解析】试题分析:由条件A∩B=B得B为A的子集,根据子集(四种)情况分类讨论,并将结果代入验证是否满足题意
试题解析: ∵A={x}x2+8x=0}={0,-8},A∩B=B,∴BA.
当B=时,方程x2+2(a+2)x+a2-4=0无解,
即Δ=4(a+2)2-4(a2-4)<0,得a<-2.
当B={0}或{-8}时,这时方程的判别式
Δ=4(a+2)2-4(a2-4)=0,得a=-2.
将a=-2代入方程,解得x=0,∴B={0}满足.
当B={0,-8}时,可得a=2.
综上可得a=2或a≤-2.
练习册系列答案
相关题目
【题目】在中学生测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高一年级有男生人,女生人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了名学生的测评结果,并作出频数统计表如下:
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 |
| 5 |
表一:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 |
|
表二:女生
(1)从表二的非优秀学生中随机选取人交谈,求所选人中恰有人测评等级为合格的概率;
(2)由表中统计数据填写列联表,试采用独立性检验进行分析,能否在犯错误的概率不超过的前提下认为“测评结果优秀与性别有关”,参考数据与公示: ,其中
临界值表:
| 0.10 | 0.05 | 0.01 |
| 2.70 | 3.841 | 6.635 |