题目内容

【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为(
A.15°
B.30°
C.45°或75°
D.15°或75°

【答案】D
【解析】解:取AC的中点G,
连接GE与GF,则AB与CD(异面直线)所成角为30°,
∵EG∥AB,FG∥CD,
∴∠GEF=30°或150°,
而AB=CD,
则GE=GF,
∴∠GFE=75°或∠GFE=15°.
∴EF与AB所成的角是75°或15°.
故选D.

【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网