题目内容
如图所示是三棱锥D-ABC的三视图,点O在三个视图中都是所在边的中点,则异面直线DO和AB所成角的余弦值等于( )
A.
| B.
| C.
| D.
|
由题意得如图的直观图,从A出发的三个线段AB,AC,AD两两垂直且AB=AC=2,AD=1,O是中点,
取AC中点E,连接OE,则OE=1,又可知AE=1,由于OE∥AB,,故角DOE即所求两异面直线所成的角
在直角三角形DAE中,求得DE=
由于O是中点,在直角三角形ABC中可以求得AO=
在直角三角形DAO中可以求得DO=
在三角形DOE中,由余弦定理得cos∠DOE=
=
故选A
取AC中点E,连接OE,则OE=1,又可知AE=1,由于OE∥AB,,故角DOE即所求两异面直线所成的角
在直角三角形DAE中,求得DE=
2 |
由于O是中点,在直角三角形ABC中可以求得AO=
2 |
在直角三角形DAO中可以求得DO=
3 |
在三角形DOE中,由余弦定理得cos∠DOE=
1+3-2 | ||
2×1×
|
| ||
3 |
故选A
练习册系列答案
相关题目