题目内容
【题目】统计全国高三学生的视力情况,得到如图所示的频率分布直方图,由于不慎将部分数据丢失,但知道前4组的频率成等比数列,后6组的频率成等差数列.
(Ⅰ)求出视力在[4.7,4.8]的频率;
(Ⅱ)现从全国的高三学生中随机地抽取4人,用表示视力在[4.3,4.7]的学生人数,写出的分布列,并求出的期望与方差.
【答案】(1)(2)见解析
【解析】试题分析:(Ⅰ)结合频率分布直方图和题意,分别求出前4组的频率以及后6组的频率之和,由等差数列前n项和公式,求出公差,再算出视力在[4.7,4.8]内的频率;(Ⅱ)求出视力在[4.3,4.7]内的频率,学生人数服从二项分布 ,由二项分布的概率计算公式求出分布列,再算出期望与方差.
试题解析:(Ⅰ)前四组的频率分别为:0.01,0.03,0.09,0.27,所以后六组数据的首项为0.27,后六组的频率之和为,
设公差为,则有: ,
所以,视力在[4.7,4.8]的频率.
(Ⅱ)视力在[4.3,4.7]的频率为: , ,
,
, ,
, ,
,
所以的分布列为:
0 | 1 | 2 | 3 | 4 | |
,
.
【题目】某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:
网购达人 | 非网购达人 | 合计 | |
男性 | 30 | ||
女性 | 12 | 30 | |
合计 | 60 |
若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.
(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?
(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.
(参考公式: ,其中)
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |