题目内容
【题目】已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点且斜率为k的直线l与椭圆相交于不同的两点A,B,试问在x轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1) (2)答案见解析.
【解析】
(1)由题意结合椭圆的离心率和椭圆的性质可得,则椭圆方程为.
(2)假设在x轴上存在点M(m,0),使是与k无关的常数,设直线L方程为,联立直线方程与椭圆方程,设,结合韦达定理可得,设常数为t=,讨论计算可得,即在x轴上存在点M(),使是与k无关的常数.
(1)∵椭圆离心率为,∴,∴.
又∵椭圆过点(,1),代入椭圆方程,得.
所以.
∴椭圆方程为,即.
(2)在x轴上存在点M,使是与k无关的常数.
证明:假设在x轴上存在点M(m,0),使是与k无关的常数,
∵直线L过点C(-1,0)且斜率为k,∴L方程为,
由得.
设,则,
∵
∴
=
=
=
=
设常数为t,则
整理得对任意的k恒成立,
,解得,
即在x轴上存在点M(),使是与k无关的常数.
练习册系列答案
相关题目