题目内容
【题目】△ABC中,角A、B、C所对的边分别为a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)设AB的中垂线交BC于D,若cos∠ADC= ,b=2,求△ABC的面积.
【答案】
(1)解:∵2acosB=3b﹣2bcosA,
∴2sinAcosB=3sinB﹣2sinBcosA
∴2sin(A+B)=3sinB,则2sinC=3sinB,
由正弦定理得, = =
(2)解:∵AB的中垂线交BC于D,∴DA=DB,则∠B=∠BAD,
∴∠ADC=∠B+∠BAD=2∠B,
∵cos∠ADC= ,∴cos∠ADC=1﹣2sin2B= ,
解得sinB= ,
由B是锐角得,cosB= = ,
∵在△ABC中,b=2,且 = ,∴c=3,
由余弦定理得,b2=a2+c2﹣2accosB,
∴ ,解得a=4或 ,
∵BD= = > ,∴a= 舍去,
∴△ABC的面积S= = =
【解析】(1)根据正弦定理、两角和的正弦公式化简已知的式子,再由正弦定理求出 的值;(2)根据条件和二倍角的余弦公式求出sinB的值,由平方关系求出cosB的值,由余弦定理求出a,由条件进行取舍,代入三角形的面积公式求出△ABC的面积.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.
学期 | 1 | 2 | 3 | 4 | 5 | 6 |
总分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);
(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.
参考公式: ,;
相关系数;
参考数据:,.