题目内容

【题目】为推行新课堂教学法,某化学老师分别用传统教学和新课堂两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为成绩优良”.

分数

[50,59)

[60,69)

[70,79)

[80,89)

[90,100]

甲班频数

5

6

4

4

1

乙班频数

1

3

6

5

5

(1)由以上统计数据填写下面2×2列联表,并判断成绩优良与教学方式是否有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.

附: 临界值表

【答案】(1)在犯错概率不超过0.05的前提下认为成绩优良与教学方式有关”.(2)见解析

【解析】

(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对应概率,列表得分布列,最后根据数学期望公式求期望.

解:(1)

根据2×2列联表中的数据,得的观测值为

在犯错概率不超过0.05的前提下认为成绩优良与教学方式有关”.

(2)由表可知在8人中成绩不优良的人数为,则的可能取值为0,1,2,3.

的分布列为:

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网