题目内容

【题目】已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时f(x)>0,且f( )=1;
(1)证明:y=f(x)是(x>0)上的减函数;
(2)解不等式f(x﹣3)>f( )﹣2.

【答案】
(1)证明:设0<x1<x2,则0< <1,

由题意f(x1)﹣f(x2)=f( x2)﹣f(x2)=f( )+f(x2)﹣f(x2)=f( )>0,

则f(x1)>f(x2),

∴y=f(x)是(x>0)上的减函数


(2)解:由函数的定义域知: ,解得x>3;

又∵f( )=1,

∴f( )=f( × )=f( )+f( )=1+1=2,

由f(x﹣3)>f( )﹣2.得f(x﹣3)+2>f( ),

∴f(x﹣3)+f( )>f( ),f( )>f( ),

由(2)得 ,解得﹣1<x<4,

综上知3<x<4为所求


【解析】1、本题考查的是函数单调性的定义。设0<x1<x2,则0< x1 x2 <1,由题意f(x1)﹣f(x2)=f( x2)﹣f(x2)=f( )+f(x2)﹣f(x2)=f( )>0,则f(x1)>f(x2),即y=f(x)是(x>0)上的减函数

2、由题意可得∵f ()=1,∴f( )=f( × )=f( )+f( )=1+1=2,由f(x﹣3)>f( )﹣2.得f(x﹣3)+2>f( ),

∴f(x﹣3)+f( )>f( ),f( )>f( ),由(2)得 ,解得﹣1<x< 4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网