题目内容
【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?
【答案】
(1)解:依题意,得:
利润函数G(x)=F(x)﹣R(x)=(5x﹣ x2)﹣(0.5+0.25x)=﹣ x2+4.75x﹣0.5 (其中0≤x≤5);
(2)利润函数G(x)=﹣ x2+4.75x﹣0.5(其中0≤x≤5),
当x=4.75时,G(x)有最大值;
所以,当年产量为475台时,工厂所得利润最大.
【解析】由题中提供的式子得出利润函数G(x)=F(x)﹣R(x)=(5x﹣ 1 2 x2)﹣(0.5+0.25x)=﹣ 1 2 x2+4.75x﹣0.5 (其中0≤x≤5),根据二次函数的最值,当x取对称轴时开口向下的有最大值。
练习册系列答案
相关题目