题目内容
【题目】F是双曲线1(a>0,b>0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3,则此双曲线的离心率为( )
A.2B.3C.D.
【答案】D
【解析】
由题意得右焦点F(c,0),设一渐近线OA的方程为yx,则另一渐近线OB的方程为yx,由垂直的条件可得FA的方程,代入渐近线方程,可得A,B的横坐标,由向量共线的坐标表示,结合离心率公式,解方程可得.
解:由题意得右焦点F(c,0),
设一渐近线OA的方程为yx,
则另一渐近线OB的方程为yx,
由FA的方程为y(x+c),联立方程yx,
可得A的横坐标为,
由FA的方程为y(x+c),联立方程yx,
可得B的横坐标为.
由3,
可得3(c)c,
即为2c,
由e,可得2,
即有e4﹣4e2+3=0,解得e2=3或1(舍去),
即为e.
故选:D.
【题目】近期,长沙市公交公司推出“湘行一卡通”扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 |
假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:
其中:,
参考公式:对于一组数据,,…,…,,其回归直线的斜率和截距的最小二乘估计公式分别为: ,.