题目内容
【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是 .
【答案】(﹣∞,﹣1)∪(0,1)
【解析】解:设g(x)= ,则g(x)的导数为:g′(x)= ,
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)= 为减函数,
又∵g(﹣x)= = = =g(x),
∴函数g(x)为定义域上的偶函数
又∵g(﹣1)= =0,
∴函数g(x)的大致图象如图所示:
数形结合可得,不等式f(x)>0xg(x)>0
或 ,
0<x<1或x<﹣1.
∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).
所以答案是:(﹣∞,﹣1)∪(0,1).
练习册系列答案
相关题目
【题目】为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)求关于的线性回归方程;(提示数据: )
(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中, .