题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin2C=2 sinAsinBsinC,且a=2,则△ABC的外接圆半径R=

【答案】
【解析】解:由正弦定理可化sin2A+sin2B+sin2C=2 sinAsinBsinC为a2+b2+c2=2 absinC,再由余弦定理可得c2=a2+b2﹣2abcosC,代入上式可得2(a2+b2)=2 absinC+2abcosC,
∴2(a2+b2)=4ab( sinC+ cosC)=4absin(C+ ),
∴a2+b2=2absin(C+ )≤2ab,
又由基本不等式可得a2+b2≥2ab,∴a2+b2=2ab,
∴(a﹣b)2=0且sin(C+ )=1,
∴a=b且C= ,∴△ABC为正三角形,
由正弦定理可得2R= = =
解得R=
所以答案是:
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网