题目内容
【题目】[选修4—4:坐标系与参数方程]以平面直角坐标系原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位,已知曲线的参数方程为,( 为参数,且),曲线的极坐标方程为
(1)求的极坐标方程与的直角坐标方程;
(2))若P是上任意一点,过点P的直线交于点M,N,求的取值范围.
【答案】(Ⅰ);(Ⅱ) .
【解析】试题分析:(1)先将曲线的参数方程转化为一般方程,再化为极坐标方程;(2)先由题意求出直线参数方程,再联立直线与圆的方程, ,运用韦达定理可求出的取值范围.
试题解析:(Ⅰ)消参得,因,所以,所以是在轴上方部分,所以极坐标方程,曲线直角坐标方程为
(Ⅱ)设,则,直线倾斜角为,则参数方程: (为参数). 代入,直角坐标方程得
=, ,
【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 | |
男生 | 15 | ||
女生 | 15 | ||
合计 |
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=,其中n=a+b+c+d)