题目内容
【题目】设函数f(x)=lnx+ax2+x+1.
(I)a=﹣2时,求函数f(x)的极值点;
(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.
【答案】(1) x=1是f(x)的极大值点,无极小值点(2)详见解析
【解析】试题分析:(1)求导数判断函数的单调性,通过单调性求极值点;(2)当a=0时构造函数F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),只要证明F(x)≥=0即可。
试题解析:
(Ⅰ)由题意得函数的定义域为(0,+∞),
∵ f(x)=lnx+ax2+x+1,
∴f′(x)=﹣2x+1=,
令f′(x)>0,解得0<x<1;令f′(x)<0,解得x>1,
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴x=1是函数f(x)的极大值点,无极小值点;
(Ⅱ)证明:当a=0时,f(x)=lnx+x+1
令F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),
则F′(x)= (xex﹣1),
令G(x)=xex﹣1,
则G′(x)=(x+1)ex>0,(x>0),
∴函数G(x)在(0,+∞)递增,
又G(0)=﹣1<0,G(1)=e﹣1>0,
∴存在唯一c∈(0,1)使得G(c)=0,
且F(x)在(0,c)上单调递减,在(c,+∞)上单调递增,
故F(x)≥F(c)=cec﹣lnc﹣c﹣1,
由G(c)=0,得cec﹣1=0,得lnc+c=0,
∴F(c)=0,
∴F(x)≥F(c)=0,
从而证得xex≥f(x).
练习册系列答案
相关题目