题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.

(1)求角B的大小;

(2)若△ABC的面积为,求sinA+sinC的值.

【答案】(1) (2)

【解析】试题分析:1化简cosAsinB+(c﹣sinA)cos(A+C)=0得sinC =ccosB,结合正弦定理及同角三角函数关系式得tanB=,可得B=;(2)根据三角形的面积得ac=2,由余弦定理得,最后根据正弦定理得

试题解析:(1)由cosAsinB+(c﹣sinA)cos(A+C)=0,

得cosAsinB﹣(c﹣sinA)cosB=cosAsinB+ sinAcosB﹣ccosB= 0,

∴sin(A+B)= sinC =ccosB,

由正弦定理得

∴tanB=

∴ B=

(2)由 ,得ac=2,

由余弦定理得

∴a+c=3,

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网